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THE PRINCIPAL PIVOTING METHOD REVISITED

by Richard W. COTTLE

ABSTRACT

The Principal Pivoting Method (PPM) for the Linear Complementarity Prob-
lem (LCP) is shown to be applicable to the class of LCPs involving the newly
identified class of sufficient matrices.

1. Background

The classes of row sufficient and column sufficient matrices were recently introduced in a
paper by/Cottle, Pang, and Venkateswaran,t6]. It was shown there that such matrices pro-
vide answers to natural theoretical questions concerning the linear complementarity prob-
lem (LCP). Further, on the algorithmic side, it was noted that Lemke's Method (Scheme
1) [9] for the LCP can "process" any problem in which the matrix is row sufficient. In fact.
by a theorem of Aganagi6 and Cottle'[11, the latter is true for any Qo-matrix having non-
negative principal minors, and row sufficient matrices are of this sort. These observations

prompt one to ask whether the principal pivoting method (PPM)'[3], [7], [51, [3] is also
applicable to this class of LCPs. This question is especiaily relevant inasmuch as the kinds
of matrices that the principal pivoting method can handle have heretofore been limited
to P-matrices and positive semi-definite (PSD-) matrices, both of which types are row
sufficient as well as column sufficient. Thus, a demonstration that the PPM can process
LCPs with row sufficient matrices amounts to a unification of the existing theory of the
PPM and an extension of its scope. Such is the main goal of the present paper.

Let us begin by fixing notation and reviewing some terminology. Given a column vector
q C R' and a matrix Al E R" ', the pair (q, .Al) specifies a linear complementarity probnlem "
(,)f order it) through the system

z > 0,1

q-+ Mz > 0, (2)

zT(q + Mz) = 0. (3) P

Ali alt ornate formulation of (q, Al) is to find vectors w, z satisfying

,= q + Mz, , >0, z >0, zT1,'= 0.

This, systix, involves it pairs of complementary variables w, ' and z, for 1 1 ..... ,t. The' .
.iiwinlrs of a complementary pair of variables are said to be complew cOt.4 of eacl other.
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To process the linear complementarity problem (q, M) means to obtain a solution (i.e., a
vector z satisfying (1) - (3)) or to demonstrate that the problem has no solution. Dis-
cussions of the processing capabilities of various linear complementarity algorithms usually
focus on properties of matrix classes. For instance, it is known that the principal pivoting
method will process any LCP (q, M) when Ml is a P-matrix (i.e., has positive principal
minors) or when AM is PSD, (i.e., xTIx > 0 for all x). In the former case, (q, M) must
always have a unique solution-regardless of what q equals-and the PPM will find it. In
the latter case, the LCP will always have a solution provided the constraints (1) and (2)
are consistent. (The matrices having this property form a class denoted Q0.) When AM is
a positive semi-definite matrix, the PPM will find a solution of any LCP (q, M) or detect
that the corresponding inequalities (1) and (2) are inconsistent.

The matrix classes P and PSD are complete in the sense that they contain all principal
subinatrices of all their members. Furthermore, the matrix classes P and PSD are distinct
but not disjoint. Consequently (by the completeness property), if Af' is a P-matrix that is
not positive semi-definite, and A" is a positive semi-definite matrix that does not belong
to P, then their direct sum, the block matrix

- i = ( A f t 0 )

0 M"11

belongs to neither of these classes, yet the PPM will process the LCP (q, M) where

q = (q,

because it decomposes into the problems (q', .11') and (q", M") each of which can be pro-
cessed by the PPM. So, in a sense, it is incorrect to think of the PPM as being limited to
LCPs (q. l) with A E P or A! G PSD.

Although their basic definitions are quite different, the classes P and PSD are subclasses
of P0 the elements of which are the matrices with nonnegative principal minors. Unfortu-
nately, the class P 0 is too large for purposes of LCP theory or algorithms. In this paper,
ou 1r attention will center on a class of matrices that contains P and PSD, yet is contained
in PonQ0 . (The subclass POnQ 0 was characterized in [11.) This intermediate class consists
of the "'row sufiici,"it" matrices whose definition we recall in the next section -- along with
the definitions of two related matrix (:lassiS.

The p lait for the reinainder of this l)ape.r is as follows. Section 2 contains the definitions
of row and coli iuin sufficient matrices and an example SIt'- i ;-,- cin,, 1 f tpeir
elenientary properties. Section 4 focuses on the operation known as principal pivoting aii(l

establishes sonle invariance theorens ieeded for the PPM. Section 5 presents tlie 1rin'iilnl
pivoting nethod for LCPs with row sufficient matrices.
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2. Definitions and an example

For ease of reference, we recall what is meant by row (and column) sufficient matrices.

Definition. The matrix M E RnX, is

(i) row sufficient if

xj(M1Tx)j<Oforalli'=l,...,n == z(MTx)j=Oforalli=l .... ,n, (4)

(ii) column sufficient if

xi(Ax)i < 0 for all i n x(Mx) = for all i = 1,...,n, (5)

(iii) sufficient if it is row and column sufficient.

In dealing with the above properties, it is sometimes handy to use the notion of the
Hadamard product of vectors (or matrices). If u E R n and v E R', their Hadamard product
is the vector u * v E R n defined by

(u*v)i= ui.v i = 1,...,n.

To apply this notion to the definition of a column sufficient matrix, we let u = x and v =

Mx. Then the defining condition is

x*(MX)<0 = x*(Mx)=0.

In the case of a row sufficient matrix, the defining condition is

x * (.MITX) < 0 X * (MTx) = 0.

Example 1. The 3 x 3 matrix

M= 2 0 -2

-1 1 0

is not in the ('lass P since it has zeros on its diagonal. These same zeros and the jxii,,.',o
l,;.. 1-,,1 11ir rows and columns prevcnt the matrix from being row or cohmn a(equate

(in the sense of Ingleton [8]). Furthermore, the matrix is not PSD, for whenever such a
positive seni-definite matrix has a zero (say, rii) on its diagonal, the sui of correspoiiding
off-diagonal entries (m,, and rnrj) must equal zero, which is not true in this case. It is clear
that the matrix Al is not the direct sum of matrices of these three kinds, cit her.

The matrix ,1! is sufficient, however. To see this, suppose .r E R" is a vector sul thit

3



x * (Mx) 0.

Then

-xIx 2 + 2xx 3 < 0

2x 1 x 2 - 2X 2 X3 < 0

-X 1 X3 + X2 X3 < 0

These inequalities imply

2x 2X 3 < 2xlx 3 <_ XX2 < X 2X 3 .

Hence

max{xlx 2,X X3,X2 x 3} 0.

Each of these three products being nonpositive, the variables must, pairwise, be of opposite
sign. But there are only two signs to share among three variables, so it follows that at least
one of xI,x 2,x 3 equals zero. It is now easy to verify that for i = 1,2,3

Xi = 0 1 JJ Xj = 0 = ' X * (MX) = o.
joi

This shows that M is column sufficient. The same type of argument applied to MT can be
used to demonstrate that M is row sufficient. Accordingly, M is sufficient as asserted.

This example shows that sufficient matrices are different from P-matrices, adequate ma-
trices, and PSD-matrices. But could they be positively scaled versions of such things?
That is, do there exist diagonal matrices A and Q2 with positive diagonal elements such
that ATl := AMQ belongs to one of the aforementioned classes? The answer is clearly in

the negative for the classes of P-matrices and adequate matrices. We shall now show that

the PSD case can also be ruled out.

For the matrix M given above, suppose there exist positive definite diagonal matrices

A = Diag(A,, A2 , A3 ) and Q2 = Diag(w,w 2,w 3 ) such that MT/:= AM12 E PSD. Then

0 -Alw 2  2AIw 3

Sl = 2A 2wL 0 -2A 2 W 3

-\3WI I\3W2 0

The assumption that M is positive sezi-definite implies its corresponding off-diagonal
Clements must add to zero, so

2A2L1 = AIw 2

2AW 3 = A3WI

2,,2W3 -" A3 W2

4



The product of the left-hand sides equals the product of the right-hand sides, so we have
2A1 22 i2 2 2

8A1A~wjwi = AiA3wIw 2.

Dividing both sides b, Awl and factoring, we get

(2A 2w3)(4A2w3) = (AzW2)(A3W2).

Substituting via the necessary conditions of positive semi-definiteness (above) and can-
celling the left-hand factors, we obtain the contradiction

4A2O3 = A3W2 = 2A 2w3.

Accordingly, AIV cannot be positively scaled to be positive-semi definite.

3. Elementary properties of row (and column) sufficient matrices

To avoid being overly tiresome, we state the proofs of the following simple propositions
rather tersely.

Proposition 1. Let u, v E R' be arbitrary and let P be an arbitrary n x n permutation
matrix. Then

pT(u * v) = (pTu) * (P Tv).

Proof. This is obvious. U

Proposition 2. Let M E R " '" be arbitrary and let P be an arbitrary n x n permutation
matrix. Then, for all x E R n

PT(X * (Aix)) = (PTX) * ((PTAfP)(PTX)).

Proof. This follows at once from Proposition 1 and the fact that ppT= 1. M

By a principal rearrangement of M E Rnxf we mean a matrix of the form PTMP where P
is a permutation matrix.

Proposition 3. Every principal rearrangement of a row (column) sufficient matrix is row
(cohmiru) sufficient.

Proof. This is clearly a consequence of Proposition 2 and the definition of row (column)
sufficiency. U

Proposition 4. Let H E R " ' be arbitrary and let D = Diag(b1 .... , ,,) be any I X 71
diagonal matrix. Then for all x E R"

x * ((DMD)x) = (Dx) * (M(D.r)).

5



Proof. We show that the i-th component of the vector on each side is the same. Indeed,
for all zi =1,...,n

[x * ((DMD)x)], = x,(DMDx)i

n

(- ixi) 1m 3ij(6jxj)

j=1

= [(Dx) * (M(Dx))],.

Proposition 5. If M E Rnxn is row (column) sufficient, then so is DMD where D is a
conformable diagonal matrix.

Proof. This is immediate from Proposition 4 and the definitions. U

Proposition 6. Each nonempty principal submatrix of a row (column) sufficient matrix
is row (column) sufficient.

Proof. Let M E R' n be row (column) sufficient. If a = (a,.. .,ak) is an index set
contained in {1,..., n}, the corresponding principal submatrix of M is denoted M,; it
consists of the rows and columns of M whose indices belong to a. Now suppose there exists a
vector y C Rk such that y * (MT, y) 0. Then define x E Rn such that x, = y, and x& = 0.
Then x * (MTx) < 0. Hence when M is row sufficient, it follows that x * (MTx) = 0, but

(X * (MTX)), = Y * (MTY).

The same sort of argument does the job for column sufficiency. U

This proposition implies that the classes of row sufficient matrices and column sufficient
matrices (and hence sufficient matrices) are complete in the sense given above. The are
also subclasses of P0 .

Proposition 7. Every row (column) sufficient matrix has nonnegative principal minors,

Proof. This was shown in [6]. 0

Proposition 8. Let a and b denote arbitrary real numbers whose product is negative.
Then the 2 x 2 matrix

M' ( b 0

is both row and column sufficient. The matrix X1 does not belong to P and if a + b = 0,
then M is also not positive semi-definite.

6



Proof. The fact that N1 is both row and column sufficient is obvious from the definitions.
It is also obvious that M cannot be a P-matrix. If M were positive semi-definite, the
condition a + b = 0 would follow from the fact that it has a zero diagonal entry. a

Proposition 9. Let a and b be real numbers such that a > 0 and b 5 0. Then a matrix
of the form

cannot be row sufficient. Its transpose cannot be column sufficient.

Proof. For such a matrix it is possible to find a vector x such that x * (MTx) _< 0 and
X2(.1ITX)2 < 0. Hence M cannot be row sufficient. By the same token, MT cannot be
colunin sufficient U

The next proposition is noteworthy for algorithmic reasons.

Proposition 10. Let M E R "f ' be row sufficient. If, for some i, mii = 0 and mji n, 0 for
all j =1 n, then mi. < 0 for all J = 1,...,n.

Proof. By Proposition 6, it suffices to prove this assertion for the case where n = 2. By

Proposition 3, it is not restrictive to assume that i = 1. The case where in 2 1 = 0 is ruled
out by Proposition 9. Thus, in 21 > 0. By Proposition 7, the condition M 12 > 0 cannot
hold, so the desired conclusion follows. U

Section 1 contains an allusion to the fact that row sufficient matrices also belong to the class
Q This was proved in [6]. Although column sufficient matrices also enjoy an interesting
property with respect to the LCP, they do not form a subclass of Q0. This can be seen
from the example

Ml = 0 .
M= 0 1

It is easy to see that this matrix is column sufficient (in fact, column adequate). But
the union of the corresponding complementary cones is not convex, al(l hence -1l V Q0.
This observation may explain why in this paper we devote more attention to row sufficient

muat ri('(S.
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4. Principal pivoting

As its name suggests, the principal pivoting method is based upon the algebraic process of
principal pivoting which we shall briefly review. (See also [5], [4].) Once this is done, we can
develop theorems on the invariance of row and column sufficiency under principal pivoting.
Such results are essential for the application of the PPM to linear complementarity problems
of this sort.

Consider an affine transformation of the form z '-* w = q + Mz where M E R"'ft ' and
q G R ' . For this discussion, the only special property required of M is that for some index
set a C {1,..., n} the principal submatrix MOO be nonsingular. For notational ease, we also
assume that I, is a leading principal submatrix of M. This is not a restrictive assumption.
as it can be brought about by relabeling. Now consider the equation w = q + Mz in
partitioned form:

w. = qO + Alz, + M az&

u7& = qc + M&Oz, + M&,iaz((

In this represeitation, the z-variables are nonbasic (independent) and the wv-variables are
basic (dependent).

Since MO, is nonsingular by hypothesis, we may exchange the roles of w and zO thereby
obtaining a system of the form

0 M , (7)
zv= q" + A o + '

where

q'OF ~ M.' =M.-. Mf" -McM,,,

qdr - f&,M 1q. A' = M ;O Mc a = - Msa1,

Definition. The system (7) is said to be obtained from (6) by a principal pivotal trans-
formation ,n the matrix 11,. In this process, the matrix MO is called the pivot block.

This terminology also applies to the matrices M and M' alone. To indicate that M' is
a principal pivotal transform of M with respect to the index set a (and the nonsingular
principal submatrix MO), we write

M' =V ).

Another notion we shall need is that of a sign-changing matrix. Once again, let a and 6 de-
note complementary index sets in {1,..., n}. Let S& be the diagonal matrix Diag(a1 . a,,)

such that for i = 1,.. ,n

= { lEa

8 Ed



These two notations come together in the following result.1

Theorem 1. Let M E R n' have the nonsingular principal submatrix M,1,. Then

(P. (M))T = S,(P,.(MT))Sj,. (9)

Proof. This formula follows from an essentially routine calculation that makes use of the

following facts:

1. Pre- and postmultiplication by S& changes the signs of the off-diagonal blocks but
not the diagonal blocks.

2. (_\T) (Mi )T: T

4. (AI')3) T - (,1lT) 3.

V\' are mainly interested in the effect of principal transformation on row sufficient matrices,
but it is convenient to treat the column sufficient case first.

Theorem 2. Let \I, be a nonsingular principal submatrix of Ml E R,". If 11 is column
sufficient and Al' = (M), then AI' is also column sufficient.

Proof. As remarked earlier, it is not restrictive to assume that the pivot block is a leading
principal submatrix of .1. Let y = '. and suppose x * y < 0. We may write

Tlic coniditi,,n . * ,x < 0 ZIeanis

x,, O Ya a X1*y.

Since .11' =),(.Al), we have

'IThis n -.y he known, but I don't recall a source for it

I I !9



But 1 is cc'umn sufficient, z'o it follows that

.5 0.

Accordingly, x * y = 0 which implies that M' is column sufficient. U

We now come to the result we really want.

Theorem 3. Let -f,c, be a nonsingalar principal submatrix of M E R " 'X. If M is row
suffici nt and ,' = V,,(M), then M' is also row sufficient.

Proof. It is obvious from first principles that a matrix is row sufficient if and only if its
transpose is column sufficient. Thus, it suffices to prove that (M')T is column sufficient.
Our hypothesis implies that Al' must be so. Therem 2 implies that pc,(MT) is column
sufficient. By the definition of M' an-' by equation (9) we have

(M')T = (V.(M))T = S&(V.(MT))s&,.

The result now follows from Proposition 5. •

In light of Theorems 2 and 3, we say that column and row sufficient matrices are invariant
under principal pivoting. In other words, when one performs a principal pivot operation
on a row (column) .sufficient matrix the resulting matrix is again row (columi) sufficient.
These invariance theorems generalize early results on principal pivotal transforms of P-
matrices and PSD-matrices. (See [10], [3].) There is no counterpart for adequate matrices
since it is not true.

We close this section with a generalization of two technical results (4, Theorem 4 and
Theorem 4'J that have very important bearing on a version of the PPM.

Theorem 4. Let A be 2 x 2 matrix with the following properties:

(i) a1I I< 0;

(ii) a2 < 0;

(iii) al + a2i < 0;

(iv) if all < 0, then

1 (2
(111 a 1 1 a 2 2 - a 1 2a 21 a 21

is row sufficient;

10



(,) if a21 < 0, then

A 2 :=- (ll al 2 a2 1 - aa 22

a 21  -a22

is column sufficient.

Then .4 must have the following properties:

(ii) (212 > 0;

1t1in) (112 + a2' > 0.

Proof. Suppose aI < 0. Then as A 1 is row sufficient, a1 2 > 0 and det A1 > 0. Hence

-( -a 2a2 l + a1 2a2 l - 011022) a22 >- 0.

If ('2 = a 22 = 0. then .41 has a zero column and hence cannot be row sufficient. a contra-
diction. Thus, al2 + a22 -, 0. Now suppose a 21 < 0. We may (and do) assunie all = 0.
Sine,, A2 is column sufficient, it follows that a22 > 0 and det A 2 _> 0. Thus,

This implies al2 _> 0. If a12 = a 22 = 0, then A 2 cannot be column (or row) sufficient, agam!1

; (',,wtra(lict ion. This means that a12 + a22 > 0. E.

5. The Principal Pivoting Method

As matters presently stand, there are two versions of the principal pivoting nietlho(l
'.vYII1IrItric and asvnnietric--both of which can be applied to linear coniplenient rity j),,l)-

lems (q. .11) with either a PSD-matrix or a P-matrix. The latter case is much simpler thaii
the forner because it does not require the use of certain precautions.These diff(,rer ..vs wxi-l
)c(coIle apparent in dle course.

Like numerous other algorithms, the PPM works with pivotal transform,s of the svsteiii

u, = q + Mz. (10)

hi the d(evel())ment bet)low, we use the superscript v as an iteratiol c(ui iter. The Miti;dl
v;aluie of I will 1,,' 0, and the system shown in (10) will be written as

u0 =q 0 + M 0 , ill)

i1



In general, after v principal pivots, the system will be

w= q + M Z". (12)

Generically, the vectors w' and zv, which represent the system's basic and nonbasic vari-
ables, respectively, may each be composed of w and z variables. Principal rearrangements
can be used to make {', z'} = {wi,zi} i = 1,...,n.

The systems (12) can also be represented in the familiar tableau form

1 n

n I q, m,,, ... Mvn

This way of presenting the PPM is just an expository convenience. Tableaux are not
essential; the algorithm can make use of a "revised simplex approach," analogous to what
has been done in an implementation Lemke's method.

The symmetric version of the PPM uses principal pivotal transformations (of order
1 or 2) in order to achieve one of two possible terminal sign configurations in the tableau.
The first is a nonnegative "constant column", that is, q' > 0 for all i = 1,..., n. The other
is a row of the form

q'<O and m'<O j=l,... , n.

The first sign configuration signals the discovery of a solution to (q, Al). The second sign
configuration indicates that the problem has no feasible solution. The PPM (as originally
conceived) does not actually check for this condition. It cannot occur when M is a P-
matrix. When M is PSD, it can be inferred from the condition

q'<0, m' =0 and mn >0 Vir,

which jI checked in the "minimum ratio test." The key observation is that the same
inference can be made when M is (row) sufficient. (See Propositions 6,7, and 10 and
Theorem 3.)

The PPM consists of a sequence of major cycles, each of which begins with the selection of a
di.4tinguished variable whose value is currently negative. That variable remains the one and
only distinguished variable throughout the major cycle. The object during the major cycle
is to make the value of the distinguished variable increase to zero, if possible. Each iteration
involves the increase of a nonbasic variable in an effort to drive the distinguished variable
up to zero. This increasing nonbasic variable is called the driving variable. According to
the rules of the method, all variables whose values are currently nonnegative must remain

12



so. The initial trial solution is (w ° , z°) = (q0, 0), hence at least n of the variables must be
nonnegative. For those variables w' whose initial value is q0 < 0, we impose a negative
lower bound A where

A< min {q}.
I<ien

This artifice is used in all cases except where M E P. Then, in addition to requiring all
variables with currently nonnegative values to remain so, the PPM also demands that the
variables currently having a negative value remain at least as large as A. To accommodate
this feature, we broaden the notion of basic solution by allowing the nonbasic variables to
have the value 0 or A. (See [21, [3], [4].) We also say that a solution of the system (10) is
nondegenerate if at most n of its 2n variables have the value 0 or A. Otherwise, the solution
is called degenerate.

In the interest of clarity, it will help to introduce the following notations. We want to
(listingiish between the names of variables and their values. To this end, we use bars
over the generic variable names u," and z' to indicate definite values of these variables. At
the beginning of a major cycle in which negative lower bounds A are in use, we will have
z'-0or i = i= 1, n. Next, we use the notation

WLV(zv) q + M , V.

The definition of tie mapping IV' is the same as that of w", but it emphasizes the argument

A simple example will help to motivate preceding ideas, especially the need for the negative
lower bounds, A. Consider the LCP of order 2 in which

q and Al

The matrix Al is sufficient, i.e., row and column sufficient. At the outset we have (w0 . :0)
(-3. -2.0.0). Suppose we choose w, as the initial distinguished variable. Then :0 would
be used as tihe initial driving variable. If only nonnegative variables are required to reinain
nonnegative, there would be no limit to the allowable increase of the driving variable. Under
ordinary circumstances, such an outcome would indicate that the problem is unsolvable (at
least by this method). But notice that this LCP has the solution (w, Z) = (1 0. 0, 2). Hence
some sort of modification is needed.

If. at the outset of a major cycle, the selected distinguished variable is basic, the first (irivilig
variable is the complement of the distinguished variable. Thus, if ti,' is the (list inguished
variable for the current major cycle, then z' is the first driving variable. The (listiiiguishled
variable need not be a basic variable, however. Thus, with the broader definition of basic
solution (given above), the current solution (w', z- ') may have z' = A < 0 at the beginning
of a major cycle. In such circumstances, z' can be the distinguished varialble as well as t he

13



driving variable. In this event, the increase of the driving variable will always be blocked,

either when a basic variable reaches its (current) lower bound (0 or A) or when z" reaches

zero (in which case the major cycle ends).

The following is a formal statement of this algorithm.

Symmetric PPM with Nondegeneracy Assumption in Force

Step 0. Set v =0; define (&0, io) = (q0, 0). Let A be any number less than mini q9.

Step 1. If q' > 0 or if (C', 5" ) > (0, 0), stop; (tbL, 2') := (q', 0) is a solution. Otherwise 2 ,

determine an index r such that ir = A or (if none such exist) an index r such that

rV <0.

Step 2. Let (,' be the largest value of z > i, satisfying the following conditions:
z-< 0 if .= A.

(i) _ r
(ii) W' (Z-,. .., z, ZV, e 1  i..v,) <0 if w7,- < 0.

(iii) I,(4,...,4_,1 ,z',4+1,...,4) 0 A if t4 > 0.
z,-1,z ,V -,+v .. ,e) > A if w@' < 0.

Step 3. If ' = +oo, stop. No feasible solution exists. If ( = 0, let i,+' = 0, ,L'+ =4
for all i $ r, and let

tV+1 = Wv+l(;&V+I) = W '+.

Return to S.ep 1 with v replaced by v + 1. If 0 < (r < +oo, let s be the unique

index determined by the conditions (ii), (iii), and (iv) in Step 2.

Step 4. If rnr+" > 0, perform the principal pivot (w', z'). Let

2v+- tV(,.., 1(r,v.. ,) and tD"+ W'*+l(iL'+i)

If s = r, return to Step I with v replaced v + 1. If s 3 r, return to Step 2 with

u replaced v + 1. If L'3 = 0, perform the principal pivot {(U,, 4'z/), (wu, ZV' }. Put1P&'+1= zi-l t-+  = (:, ++ = / -
, ,, , for all i {r,s}, and then twv"+ ' =

for all i {r, s}. Return to Step 2 with v replaced by v + 1 and r replaced by s.

Discussion

Here we wish to discuss what algorithm does and why it actually processes any LCP with

a row sufficient matrix, M.
2At the beginning of a major cycle, for each index r, at most one of u), z" can be negative.

14



All major cycles of the PPM begin at Step 1 were the algorithm checks whether it is possible
to terminate with a solution. This will be the case if (I, ') > (0,0) since (tb", i") must
then be a nonnegative solution of (10) with i' = 0. As illustrated in Example 2 (below),
it can happen that the constant column q" becomes nonnegative before z" does. In such a
case, resetting zW to zero yields a solution. If neither of these forms of termination occurs,
there is an index r such that i, < 0 or tiv < 0 and it becomes the distinguished variable
for the current major cycle.

For a linear complementarity problem (q, M) of order n, there are 2n variables in equation
(10). The number of negative components in a solution of (10) is called its index of
infeasibility. The conditions imposed in Step 2 of the Symmetric PPM prevent this number
from increasing. Furthermore, with each return to Step 1, the algorithm produces a basic
solution having a smaller index of infeasibility than its predecessor. Since there are at most
a finite number of basic solutions, there can be at most finitely many returns to Step 1.
The proof of finiteness therefore boils down to showing that each major cycle consists of
at most a finite number of steps.

Termination can also occur in Step 3. In this event, Q = +oc. For this to happen, the
distinguished variables must be u,"; it must also be true that

i', =>0 and mn > 0 Vi-r.

From Proposition 10, it follows that m' < 0 j = 1,... ,n. Now, since ,<0 for all and

n

4,v = qv + Z V' -' < 0,

it follows that q < 0, so that the r-th equation

n

j=i

has no nonnegative solution. Another outcome in Step 3 is that ( ' = 0 in which case
(by nondegeneracy) the distinguished variable and the driving variable must have been ZV

which increased to zero. This brings the major cycle to a close without necessitating a
pivot. The remaining possibility 0 < (' < +oo means that some basic variablet blocked the
increase of ".

The various alternatives that arise in the latter situation are addressed in Step 4. If m<' > 0.
the indicated principal pivot is executable. If s = r, the distinguished variable must have
increased to 0. This brings about a return to Step 1 and a reduction in the index of
infeasibility by at least one. If s j r, the principal pivot is made and the increase of the
driving variable continues in accordance with the rules of Step 2. If m., = 0, then s € r.
The fact that u. blocked r4 means in' < 0. The principal pivot of order 2 is executalble
because the row sufficiency of
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and the negativity of m implies that m' > 0. (See Proposition 9.) The values of the
variables immediately after the pivot are those they had when blocking occurred. At the
return to Step 2, the variable w" becomes z'+; a principal rearrangement to restore the
natural order of subscripts would be possible.

As noted above, the argument that the algorithm will process any nondegenerate LCP
with a row sufficient matrix comes down to showing that there can be at most finitely
many returns to Step 2. But this is clear from the fact that there are only finitely many
principal transformations of the system and finitely many ways to evaluate the nonbasic
variables z4 (i # r). As for z., its value and that of its complement wv increase monotoni-
cally and their sum increases strictly throughout the major cycle. Hence the definition of
( and (r'+C (K > 0) make it impossible to have z!' = z!' +' (i = 1,.. . , n) and i," = ii' + ' (i
r) as would have to be the case with infinitely many steps within a major cycle.

Example 2. Consider the LCP (q, M) where

-30 1 

q 6 and M 2 0 -2

-1 -1 1 0

The PPM applies to this problem because the matrix M is sufficient (as shown in Example
1). It is easy to verify that (q, M) has the solution (ai,; i) = (2, 0, 0; 0, 1, 3). The discussion
below illustrates how this solution can be obtained by the symmetric version of the PPM.
The reader is advised that, for simplicity, the superscripts (iteration counters) and bars
(denoting fixed values of variables) are omitted.

For this choice of data, the problem (q, Al) has the tabular form

1 zi z2  z3o _
w2  2 0 -2
W3 - -1 1 0

The number A = -4 will serve as the negative lower bound for the initial negative basic
variables w, and w3. Choose w, as the distinguished variable and its complement z, as
the driving variable. The blocking variable is w 3 which decreases and reaches its lower
bound -4 when z, increases to 3. Since the corresponding diagonal entry m equals 0, it
is necessary to perform a principal pivot of order 2: (w 3 , zi) and (w, z3). The new tableau
is
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1 W 3  Z 2 W 1

Z3 2 2

w2  1 2 1 - 12
z1  -1 - 1 0 3

-4 0 -3

Now the distinguished variable wl is nonbasic and can be increased directly as the driving
variable. In this case, the driving variable blocks itself. Thus, the first major cycle ends
with the tableau

1 W 3  Z2  Wl

Z3 2 2 2
w2  1 -2 1 -1 9
z1  -1 -1 1 0 3

-4 0 0

For the next major cycle, the only possible distinguished variable is w 3 which is nonbasic
at value -4. This becomes the driving variable and is blocked when it reaches -1 and z,
decreases to 0. Once again a principal pivot of order 2 is needed. It leads to

I Z I  Z 2  Z3

Wi -3 0 -1 2 0
w2  6 2 0 -2 3
w3 -1 -1 1 0 -1

0 0 22

Here the driving variable is the z3 which starts from the value 2; it is blocked when it
2'

reaches 3 and w 2 decreases to 0. This time the algorithm performs a different principal
pivot of order 2: (w2 , z3 ) and (w3 , z2 ). This yields

1 z1  w3  w2

w1  -1 -1 3
z 3 3 1 0 -1 3
z2  1 1 0 0

0 -1 0

The distinguished variable is still w3 whose current value is -1. If used as the driving
variable, it will block itself and a solution will be obtained. Another option is to observe
that the "constant column" is positive. In such a case the negative basic variable(s) can
be set equal to zero. Either way, the solution found is (tb; ff) = (2, 0, 0; 0, 1, 3).

The asymmetric version of the PPM also consists of a major cycles. Instead of
executing only principal pivots of order 1 or 2, each major cycle involves a sequence of
"4simple pivots" whose effect may be a principal pivot of larger order. The rules governing
blocking are the same as those in the Symmetric PPM (nonnegative variables are bounded
below by 0, and negative variables are bounded below by A. A negative driving viiriable

17



is bounded above by 0.) The main difference between the two versions of the algorithm
is that in the asymmetric one entails pivotal exchanges between the driving variable and
the driving variable and then takes the new driving variable to be the complement of the
blocking variable. Just as in the positive semi-definite case [4], the distinguished variable
and the driving variable increase monotonically and their sum increases strictly. This
assertion is can be proved by using Theorem 4. We omit further details and simply point
out th..t the argument used to justify the aysmmetric version of the PPM for PSD matrices
carries over mutatis mutandis to the row sufficient case.
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